Step of Proof: assert_of_le_int
9,38
postcript
pdf
Inference at
*
1
I
of proof for Lemma
assert
of
le
int
:
1.
x
:
2.
y
:
(
(
y
<z
x
))
(
(
y
<
x
))
latex
by
InteriorProof
((RWH (LemmaC `assert_of_bnot`) 0)
CollapseTHENA ((Auto_aux (first_nat 1:n
CollapseTHENA ((Au
) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
(
(
y
<z
x
))
(
(
y
<
x
))
C
.
Definitions
P
Q
,
P
Q
,
P
Q
,
P
Q
,
,
t
T
,
x
:
A
.
B
(
x
)
Lemmas
assert
of
bnot
,
iff
functionality
wrt
iff
,
not
wf
,
lt
int
wf
,
bnot
wf
,
assert
wf
origin